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30. Kinetics of Photochemical Systems with Modulated
Optical Excitation

by M.Forster, U.P.Fringeli, and Hs. H. Giinthard

Laboratory for Physical Chemistry, Swiss Federal Institute of Technology,
Universititsstrasse 22, CH-8006 Zurich, Switzerland

(10. VII. 1972)

Summary. The kinetic equations of a photochemical system are discussed in which the tran-
sitions from the ground to the first excited state are produced by a sinusoidally modulated photon
source. The system includes irreversible reactions starting from the first excited singlet state S,
and the first triplet state T, (¢f. Fig. 1). Explicit solutions are given for a linear approximation of
the equations of motion for the parametrically modulated system. The solutions apply only when
there is weak optical pumping, low quantum yields of the photochemical end-products and for
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certain conditions of the modulation frequency. The concentrations of all particles occurring are
shown to consist of modulated and unmodulated components where the amplitudes of the modu-
lated components are slowly decaying exponentials. The phases of the modulated components
are shown to be non-decreasing along a scquence of irreversible steps. Formulae are given which
permit detcrmination of the photochemical system rate constants and location of a particle in a
sequence of irreversible reactions.

1. Introduction. — In recent years modulation methods have become an important
tool for the improvement of sensitivity and resolution in many fields of physical
chemistry. Modulation excitation spectroscopy was proposed first by Hexter (1] for
the measurement of life times of excited electronic states and has actually been used
similarly by Labhart [2] and others. Birks et al. [3] have discussed extensively phase
fluorimetry methods. Modulated excitation has also been applied very efficiently
to the study of triplet life times, including energy transfer by excited metal atoms {4].
Johnston et al. [5] have reported the development of a modulated excitation infrared
(MEIR.) gas spectrometer, and Fringeli et al. [6] have very recently described an
MEIR. spectrometer including its sensitivity. An application of this spectrometer
to the study of a photochemically induced sequence of irreversible reactions has been
reported by Fringeli [7].

During this work, it became obvious that the same principle may be applied to
a variety of spectroscopic techniques, which allow the modulation of the concentra-
tion of transient particles, ¢.g. ESR. and microwave spectroscopy. In many cases
the molecular systems, investigated by modulated excitation, behave approximately
according to Fig. 1, with the additional specification that the exciting light source
produces only small populations of the excited singlet 5, as compared to that of the
ground state singlet S,. According to the kinetic scheme Fig. 1, irreversible reactions
either from the S; or T; state are included and are assumed to form chains of irre-
versible first order steps. Owing to the irreversible sequences, continuous pumping
in the cycle S, <=S; — T, leads to irreversible changes of the populations of these

1

states, superi;”l—po_sed on the modulation. From a general point of view the exciting
light source acts as a parametric modulator.

In this paper we give a complete approximate solution of the kinetic equations
of this system for the case of a weak pump modulated sinusoidally. The solution is
based on a treatment usually applied in the theory of quantum mechanical perturba-
tion. Tt includes both the aperiodic (exponential) and periodic components (ampli-
tudes and phases) of the populations, but is restricted to the fundamental of the
modulation frequency and to times comparable with or greater than the modulation
period. It will be shown that the exponential behaviour for ‘large’ times is dominated
by the smallest eigenvalue of the constant part of the kinetic matrix, Z.e. by the
pump coefficient. The phase shifts of the periodic components of the populations
in the side chains increase monotonically along the chain, but also depend on the
phases of the populations in the cycle Sy == S; — ;. The formulae may be extended

1‘ .

to include first harmonic modulation components, which, however, may be shown to
be negligible for classical light sources. The solution presented in this paper is con-
sidered to be applicable to a wide variety of photochemical systems. In a forth-
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coming paper it will be used in the kinetic analysis of MEIR. spectra of photo-
generated radicals of polyhydroxy-benzenes [8].

2. Definition of the kinetic system and equations of motion. — The kinetic
equations discussed in this paper are based on the kinetic diagram shown in Fig. 1,
where S,, S, and 7, denote the ground state, the first excited singlet and the first
triplet state, respectively. B;, B,, ... Bm denote particles forming a sequence of
irreversible reactions starting from the excited singlet S;, and C;, C,, ... Cy form
a similar irreversible first order sequence starting from the first triplet 7;.

S| emm
ks
K23 — B,
b, ——— B,
e T b...\ Bm
\ b ., TE———
ot w ko ¢ ¢
s C
Ky N c
L] 2
R
y Cn-y Cn
Sy e

Fig. 1. First ovder kinetics of a photochemical system with modulated excitation D(t) = 1/, Pgw (1+
coswt) and sequences of irveversible veactions (B and C). The constants kyy and kg, contain radiative
and nonvadiative contyibutions. The cycle Sy 2 S, — T, vepresents the A cycle (see section 2).

For the cycle

Se<=S, > T

1 1
the important assumption will be made that only the transition S, — S; will be
excited, with transition rate @(¥)w, by the photon-flux @(¢).

The spontaneous transition probability &,,;, from S; to S;, may contain thermal
(non radiative) and optical (radiative) contributions. Similarly, the spontaneous
transition probability %, from 7] to S,, may consist of radiative and non radiative
contributions. Finally the photon-flux is assumed to be modulated harmonically, viz.

D(t) = 3— D, (1 + cos wt) (2-1)

For the mathematical treatment we shall now denote the cycle S, 25, - T; as
(|
the cycle A with the notation A; = S;, Ay =S;, A; =T, (see Fig.1). With this
notation the equations of motion of the system for t >0 are obtained from Fig. 1
directly in matrix form
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'”A(tP‘ CA@))
Ecllt B(#) ' = (K 4—%(15 (I + coswt)w W) B(#) (2-2)
o LC)

where A(f), B(f) and C(f) represent the column vectors of the instantaneous particle
concentrations (A(f) = A(f) transposed, etc.), i.e.

(A1) = (TA(), TA,)(0), [A5)()
B(®) = ((B(), (Bal®), - .. [Bml(®) (2-2")
(€)= ([CIE), [CA ), .- [Cal()

K is the kinetic matrix of the whole system and may be divided into submatrices

I I

Oz

f

according to the subdivision of the concentration vector (A(t), B(t), C(t)) i.e.
T KAA KBA KCAD
K= | KAB KBB KB (2-3")
\_Kac KBC KCC |

where according to Fig. 1

KBA — KCA — KBC — KCB — ( (2-3")
(0 hy g
Kad = | 0 -k 0 (24"
N 0 k23 - ka Jl
where
kz = k21 + kza + kB ks = kal + ko (2‘4”)
(o ks 0) 0 0 k¢ b
o 0 o O 0 0
KaB_ | . KAC— | . . . (2-5)
0O 0 0 0O 0 O
. ./ = ./

KBB and KCC are lower triangular singular matrices of the form (¢f. Fig. 1)
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o
-b;, O 0 . . . 0
+by —b,
0 + by
KBB = 0
0 . . . +bma O
g v
f (2-6)
r Y
~¢ 0 0
+TC —C
0 +cy
KCC =
L o . . . . 0 4-Ccp-y O J

The matrix 1/, @, (1 4 cos wt) wW is time-dependent for a modulated system. W may
be subdivided into submatrices similarly to (2-3")

7 WAA  WBA  Wca )
W= | WAB WBB WCB (2-7)
_ Wac  wBC  wee

S
where all submatrices except WA4 are zero and
(-1 1 0
WAA — 1 -1 0 (2-8)
Lo 0 0

if induced emission is included.

It is evident from Egs. (2-2) to (2-8) that the equations of motion may be de-
composed into three subsystems:

d 1 1
a7 (Al) = (KAA 4 = By wWAL 4 — By wWAL cos ) (A()

(A(0)) = ([A(0), 0, 0))
< By - KAB(A(f) + KBB(B(r))

a X (2-9")
(B(0)) = (0,0, ... 0)
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Ct)) = KAC(A(f)) + KCe(C{t))
(C(0)) = (0, 0, ... 0)

3 ¢ (2-9")

The solutions of the non-homogeneous Eqgs. (2-9”) and (2-9”) may be obtained
from the general equations:

t 3
(B() = f KPP U-1) KAB(A()) At (C(H) = / eXCC 1) KACA() dF  (2-10)
0 0
if the solution (A(#)) of Eq. (2-9'), i.e. of the cycle A of the kinetic graph, is known.

Therefore, we must first give an appropriate solution for the time behaviour of the
concentrations of the cycle A.

3. Solution of the kinetic equation of the cycle A. — Eq. (2-2') represents a
linear system with periodic coefficients. Since these coeificients are continuous for
¢ > 0, a unique solution exists, which may be written in the form

(A(9) = X(#) (A(0)) (3-1)

where X({) is the unique matrix satisfying the matrix differential equation [9]

dX 1 ) —
Bk (KAA + 2 Dy (1 + coswi) wWAA) X@ with X(0)=1 (3-2)

Though the theory of systems of this type has been treated intensively, solutions
in closed form are difficult to obtain [10].

For the case of a weak pump, an approximate solution, adapted to the situation
prevailing usually in modulated excitation spectroscopy (MES) [5] [6], may be
obtained as follows. At present, for this technique, the following relations hold

Ry 2 10881, Ry =100...108s7), Q@Puw A 1ls™, Ry > w, Pw < ky<LEky. (3-3)

Under these conditions for ¢ > T" = 2 s/ the concentrations of the particles, averaged
over a modulation period, may be shown to be slowly varying functions of time. An
approximate solution of the equations of motion may then be found by the ansa‘z

X(t) = eKt X (1) (3-4)
where

obt — e(KAA + Y dwWAAYR

is the solution of the equation

gt— U(f) = KU(@), U(©0) =1 (3-5)

and X(¢) is a new, as yet unknown, matrix. The ansatz (3-4) means that the solution

matrix —}_((t) is a product of a matrix eKe containing only unmodulated terms and a
matrix X(f), which describes the effects of the parametric modulation of the system
in addition to unmodulated components of the concentrations.
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By combining Eq. (3-2) with (3-4) we obtain

d 1 - —

T X(t) = 5 Dw cos wi e~ Kt WAA Kt X () (3-6)
A solution of Eq. (3-6) may be obtained either by the use of the Baker-Haussdorff
formula [11], or by the matrizant method [12].

The former apparently does not yield formulae easily applicable to actual experi-
ments, and so a solution based on the matrizant in the pump factor !/, @;w will be
given.

Considering for the moment only the first iteration term of the matrizant solution
of Eq. (3-6) one obtains:

4

1 — - 1
X =1+ % @OW/COS w t'e~K' WadeKt' 4t 4 0 ((~2 @Ow) 2) (3-7)
y ‘

As will be discussed later, numerically calculated solutions up to second order proved
this approximation to be justified for conditions of MES. using classical light sources.
For high energy pulsed laser sources extension to higher approximations may be
required. It should be pointed out that the matrix e(X** + % @wWA% jtcelf contains
terms of the order (!/, @,w)? and higher, and therefore the integral term inEq.(3-7)
also contains 0((/, @yw)?) terms. In order to obtain a solution useful practically, it

proved important to retain terms at least up to (}/, @w) in the matrix exponential
eRAA + d:uwwAA)z_

This requirement on the other hand allows the calculation of the eigenvalues and
eigenvectors of K by perturbation technique.

Assuming that the matrix K may be diagonalized by similarity transformation
[131Y), 1.e.
TIKT=A, e¥=TetT-1 (3-8)

one obtains from Eq. (3-7)

12
1 = = -
X{t)=1+ E(Pow T/cos wt e W T-1TWAAT e d¢ T-1 (3-7)
0

Expanding both Tand 4

= = E Tk = - kA® "
T é‘(zq%w) T A 2(2¢0w) 4 (3-9)
and using for the inverse T-1 the expansion

T — TO-1 %qaow TO-LTH TO-1 4 ((-; Cbow) z) (3-10)

1) 1t should be pointed out that the matrix K is not normal, nevertheless its eigenvalues are,
in general, all distinct and therefore K can be diagonalized by similarity.
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where 0((1/, P;w)?) contains all terms of the order (}/, @,w)?, one obtains with the
approximations

— 1

T TO 4 By T

— 1

Tt x TO- — — Ggw TO-L T0) 7O (3-11)

— 1
A~ AO® 4 2 P,w AW

by insertion into Eq. (3-8) the commutator equation

A0, Z] =40 - Y (3-12)
where

Z = TO-1T@) Y = TO-1 WAS TO (3-12))

Eq. (3-12) may be solved for Z by a technique usually applied in the Rayleigh-
Schrddinger perturbation theory of quantum mechanical systems [14], giving

Zom =0 (3-13)

A0, — A9,

Znm = (TO-1 TO)pyn = (m + n) (3-13")

AN pm = Ymm (3-13")

Explicitely, using the coefficients of K and Waa given in Eqgs. (2-4') and (2-8),
Egs. (3-9) to (3-13") give
( 1 (k21 k2 - k21 k3 - kBl kZS)/k2 skfﬂ. \w
TO = | 0 (kg — ko) 0 (3-14')

w 0 kos ks P

T 1 (hyy kyy + Eyy by) (Raky)t Eyfks )
TO-1 = | 0 (kg — kg)™! 0 (3-14")
L0 — kg (kg (kg — ky) 1Jk

J
(o 0 0 )
AO=| 0 —k, 0 (3-14")
\O 0 —ky .

Introducing the abbreviations
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& = (— koks + kosha + kyks) (Roks) ™

B =— ((Rgg + ko) (kg — kg) + karfeg3)/Ra (3-15")
y = by — k)
gives for Y and Z respectively
7« af — kg
Y = y By — Ry (3-15")
w — Ragy [y — kosfy/ks kay kagy ks
(o —aflky kyioufks |
Z = y/k, 0 — kgyy? (3-15")
| — gy lhs?  asByPhs 0 )

The eigenvalues, up to first order, are

1
Ay = — P} Dow (kag ko -+ ks kp + kp ko) (kg kg)™!
1
Ay = — ky — Ediow (L4 Rayfka + kay kg (R (Ry — Fa))™) (3-16)

1
Ay = — kgt E@ow kg Rag (By (Ry — ky)) !

Eq. (3-16) shows that Zl is proportional to the pump coefficient !/, @;w and in most
practical applications the following relationship of order of magnitude is fulfilled:

2] = 125 > 12y (3-16")

The behaviour over a long period (! » T = 2 njw) will therefore be dominated
by 2,. Since 4, = 0, the reason for the inclusion in Eq. (3-7') of terms up to first

order in A now becomes apparent. Omission of the first order terms would have given
an unacceptable approximation of the slowly varying components of the populations
within both the cycle A of the kinetic graph and the side chains B and C.

By inserting the approximation (3-11) in Eq. (3-7') and ordering the terms in
powers of the pumping factor 1/, @,w, the solution of the kinetic equation (2-9’) of the
cycle A becomes, after some lengthy manipulation,

- 1 —
(A(t)) =TO (e’” + -E ¢0W [Z, e’“] +

. : (3-17)
+ 2 B,w et /cos wt! e~ Y e dt’) TO-1(A(0))
0

The solution A(f) now becomes separated into unmodulated and modulated terms
with frequency w:
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- 1 o . .
[AL1(8) = [A)(0) (e 1—- P Dow (kg Ry (k5 — ké) + Rorky (Ry — k) (kgké (ky— &)~}

- 1 L= =
et 2 Pow (kyy (ks — ky) + kagkay) (ks (g — ko)) {a5 (A — Ao) + K51}

-1 L= _
— ekt P DoW Roghyy (kg (kg — k) {af (A, — A3) + ksﬁl}‘

3 J

1 < .
+ [A41(0) 2 Dyw et {“1 (kg (kay — k) + koghyy) (Ryks) ™ sin wi
— ay (kgy (kg — ko) -1~ Roghay) (ky (Rg — kg)) "
- cos (mt 4 arctg (— w/(}] — 12)))

- Ay kaghyy (kg (ks — kg)) =" - cos(wt + arctg (— /(A — 43)))

1 - - _
[AL](f) = [A](0) 2 Dyw {ez't k;1 — oM {“i (A — Ag) + ]‘zl}} (341
1 - -
1- TALJ(0) 2 Dow et a, cos(mt 4 arctg (—w/(4; — 4y)))

;, Dow {eit by (fgks) 1
Ol (ky — k) {02 (Ay — ) - By 1)
Rt Ry (ky — hy) a2 (T, — Tg) + k:;l}}
+ [A{](0) ; Dyw eh oy (kg — k) ! {az cos (et |- arctg(— /(L — X))

— ag cos (et 4 arctg(— o/(}, — Za)))}

=o' dg = ((-}-*1 - 12)2 |- @)1 ag = ((A4 — 13)2 + w?)=12

Eq. (3-18) may be written more generally for { » max (lizl‘l, li;,l“)

TA() ~ e (Agy + Ay cos(of + @), i = 1,2, 3 (3-19)

where Ajy and Ay, denote the amplitudes of the unmodulated and modulated parts,
respectively, of the concentration [A¢](¢). ¢; is the phase shift of the modulated part
relative to the exciting light function 1/, @yw (1 + cos w t). By reason of causality the
phaseshifts ¢y must be < 0° in every case.

4. Explicit asymptotic solution for chains B and C. - Insertion of the solu-
tion (3-19) for the cycle A in equation (2-10) for the chains B and C yields two com-
pletely analogous solutions for the instantaneous concentrations of these chains.
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Calculation may be either by matrix calculus, according to Eq. (2-10), or by direct
substitution in Eqs. (2-9”) and (2-9"), respectively. Both methods are straightforward,
though rather lengthy, and yield solutions in two different forms, shown to be iden-
tical by rather tedious rearrangement of terms and application of trigonometric
formulae. It should be remembered that all solutions given below are valid only for
t > T = 2najw, i.e. for the asymptotic behaviour of the modulated system.

4.1. Solution by direct substitution. For the explicit solutions of a chain C with 3
steps, see appendix A.

From these solutions, a simple general expression may be found for the modulated
part of the concentration [Cs](#) of the particle C; in a chain of arbitrary length =
(n > j)

- i—1
Ager ke [ ¢
4=

[Cj](t)mod. = Ccos ((J)t -+ Ps -+ Z’]‘ a_rctg (~~ - 50_7) ) 2) (4_11)

oo
ITV Gy + co)? + w?
i=1

and the endpoint of chain C is given by:

- n—1
Agert ko I i
[Cn] (t)mod. - _ -1 _zil "”7;
VB4 @ [T V(3 + co)? + o? (4-17)
=1
71 w ® 2)
* cos (a)t * ¥s + ié; arCtg B j-—1 + ¢ + arCtg (_ 71)

Since in general lw/ill > 1, the modulated part of the concentration of particle Cy
has a phase shift differing by ~ —90° from its precursor Cp;.

4.2. Solution by matrix method. Eqs. (2-6) show that the kinetic matrices of both
the B and C sequence are lower triangular matrices. The kinetic eigenvalues are
given directly by the diagonal elements. Furthermore, KBBE and K¢C may be ana-
lytically diagonalized and therefore the exponentials exp (KBBt), exp (K¢Cf) may be
expressed in closed form according to Eq. (3-8).

For instance the exponential matrix exp (K¢C(# — ¢'}) in Eq. (2-10) reads, for a
chain with three steps

( e-alt=) 0 0)
Cl » ’ »
c ) I (e—cl(t—t) — e~ Cylt—1¢ )) e—cz(t—t)
e K-t _ —C + ¢y (4-2)
—C —cy(t~t) c e*cz(t“/)
B + G +1 —e ) 41 1
L —C; + Gy D)

2} The arctg function in these expressions has to be taken as follows in the neighbourhood of the
point infinity:

T
arctg (4 o) = — 7
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Hence, Eq. (2-10) may be exploited directly. For the explicit solutions of chain C
with 3 steps, see appendix A,

5. Discussion. —~ The asymptotic solution of the kinetic equations will be dis-
cussed mainly from two points of view:

1. accuracy of the asymptotic solutions
ii. information obtainable from modulation spectroscopy experiments.

5.1. Accuracy of the solution. — 5.1.1. Limitations. The use of the matrizant solution
for the asymptotic behaviour may seem objectionable since it is usually only appro-
priate for short time behaviour. However, by the ansatz (3-4) the behaviour over a
period is taken into account before the iteration step. We therefore consider its use
as an asymptotic solution to be justified in essentially the same way as is usual in
quantum mechanical treatments of time dependent perturbations of first order
radiation processes [15].

Another important fact related to the eigenvalues of K should be mentioned.
In the discussion it has been assumed so far that Eq. (3-16") holds. Although the
second inequality therein will be fulfilled for experiments with classical light sources,
an accidental degeneracy could occur, viz.

=20 or A= (5-1)

In this case the solution changes into a form with terms £.exp (4,) etc. [16]. Though
such degeneracies miglit not appear frequently, they should be kept in mind.

The most important simplification is the neglect of higher iteration steps, e.g.
terms with (1, Dgw)?, (Y, cow)? ... which contain frequencies 0, w, 2w .... To
investigate the convergence of the approximate solution of cycle A, terms with Ow
(with order 0 and 1st order in !/, @yw), lo (Ist and 2nd order in !/, @w) and 2w
{(2nd order in !/, Pyw) have been calculated numerically and compared with each
other (see appendix B).

From these calculations one could derive some conditions which have all to be
fulfilled if the asymptotic solution is to be correct to within a few percent:

t> max (AL |Asll, 2roY) (5-2)
0 <[] <min(id], |4 (5-3)
@ > |4 (5-4)
and for practical applications
Pyw < 1051 (5-5)
t >max (10 |4,17, 10147, 20 mew-Y) (5-6)
w > 207 | Ay (5-7)

From Eq. (3-16) it is obvious that for kg = %2¢ = 0, il = 0. Furthermore, in this
case 4@ =0, 7==1,.. oo for all orders of approximation. Thereby Egs. (5-4) and
(5-7) become meaningless. It should be pointed out that Eq. (3-18) still holds for the



HevveTica Crimica Acra -~ Vol. 56, Fasc. 1 (1973) — Nr. 30 401

case where no irreversible photochemistry takes place, which can be shown by
inserting &g = k¢ = 0 in Eqs. (2-4) and recalculating as in sect. 3. Furthermore, in
this case it can be shown that by decreasing w to zero, Eq. (3-18) is converted to
the solution of the unmodulated system

T AB) — (KA 4 B (A() =8)

(cf. Eq. (2-9')), that is, for kg = k¢ = 0, no lower limit exists for w.
Provided all the inequalities (5-2) to (5-7) are valid, the solution (3-18) may now
be simplified
[AL() = [A}](0) ¥ {1+ Dow {ay (kg (kyy — k) + kygky:) (kykes) ™! sin wt
— g (Rgy (kg — ko) 4 Raghs) (kg (R — fea)) ™ - cos (wi -+ arctg (— wf (11 - 12)))
+ g kygkyy (Rs (Ry— ka)) 71 cos(wt +- arctg(— w/(il - j—a)))}}

1 - - ¢ (59
[A.)() ~ [A](O0 ) Dyw ek {kz_l + a, cos(wt + arctg (— /(A — 22)))}

1
[A3]()) =~ [AJ(O ) Dyw eht Ray {(kzka)_l + (kg — k)™t

X {ay cos(wt 4 arctg(— w/(i1 — ZZ))) — a4 cos(wt + arctg(— w/(z1 — Za)))}}

with abbreviations a;, a,, a; the same as in Eq. (3-18). The three expressions for
[A)0), [A.]() and [Ag](¢) in Eq. (5-9) contain those parts of the solution (3-18)
which may now be observed experimentally by use of the modulation systems at
present available.

5.1.2. Conservation of particle number. 1f in Fig. 1 kg = k¢ = 0 the particle number
is conserved within cycle A, then according to Eq. (34) K becomes singular, hence

J1=0 (cf. Eq. (3-16)). Thus for ¢ > T = 2 7jw all components of the populations
A, Ay, A,y (modulated and unmodulated) are constant in time.

The eigenvalue 0 of the matrices KBB and K€€ expresses the fact that for £ - oo
the total particle number A;(0) must be either in the state By or Cy. This may be
verified for chains B and C with three steps from Eq. (A-3) (see appendix) which
yields:

[Bg)(00) = kg Es[A[1(0) (kyg ko + kg kp)™ + 02~
[Cs](00) == kay kc[A1](0) (has b + ks kp) =1 + O(Ag™) (5-10)

As to be expected, the populations of the endpoints of the chains B and C for  — oo
depend on the kinetic constants of only the A cycle.

26
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5.2. Experimental information derivable from the asymptotic solutions. — 5.2.1. Rela-
tion to MES.-Experiments. The use of the solutions (3-18), (5-9), (4-1") and (4-1") may
be classified according to two typical systems (Fig. 2) ;6]

i. single modulation experiments
ii. double modulation experiments.

Single Modulation

7\ uMc
A__ Mc

- (] :_/\UMC
@EA}-- ;» PSD[~{—{PSD A M

i - -
i o A\ MC
- —

Fig. 2. Schemes for Modulation Spectroscopy

S: source for analysing radiation, M: modulator with frequency £ for the analysing radiation,
UV.: UV.-light modulated with frequency w, C: cell with rcaction under examination, D: Detcctor,
A: Amplifier, dc- or ac-coupled, PS: phase splitter, PSD: phasc sensitive detector with reference
frequency w or £2, I: Integrator, MC: signal originating from the modulated components of
particle concentrations, UMC: signal excluding modulated components of particle concentrations.

In these types, the signal S(Z, ») observed is either proportional to the modulated
concentrations, 7.e.

S(t,v) o Xem(¥) cm(t) = &) c(t)?) (5-11)

or is proportional to the exponential of the concentrations (modulated and unmodu-
lated)

S(t, %) o exp{— LY em(¥) cm(t)} = exp{—L &(») c(£)}3) (5-12)
where

em(¥) = molar extinction coefficient of particle m at spectrometer setting »
cm(?) = instantaneous particle concentration of particle m
L = thickness of absorption cell

Eq. (5-11) relates to situations often encountered in ESR., NMR. and MW.
spectroscopy (weak absorption), whereas the second case (5-12) is realised in the
Lambert-Beer type, e.g. optical experiments such as MEUV.- and MEIR.-spectro-
scopy. Yor the latter type the expression (5-12) may be simplified, by taking into
account the fact that the modulated components of the instantaneous concentrations

3)  For the sake of simplicity we denote the vector (:X(t), B(), 6(!)) by €(#), ¢f. Eq. (2-27).
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of all reacting particles fulfil the inequality

Lep) () <02 (5-13)
Hence, in this case

S(t,v) oc exp{—Le@) c'@)} (1 — L&) () + 0 ((Lep) ")) (5-14)

where Le(v) c’(f) contains all the modulated and L () ¢’(f) all the unmodulated
components of the particle concentrations.

Information about the modulated and unmodulated components of particle con-
centrations may be obtained directly by using appropriate phase-sensitive detector
systems, e.g. single and double modulation for (5-11) and double modulation for
(5-12).

5.2.2. Information derivable from amplitude and phase measurements. We restrict
ourselves to weak pump experiments and situations where all the inequalities (5-2)
to (5-7) hold.

1) Smalilest mgenvalue 21 Since the vector of the modulated concentrations is pro-

portional to exp (2 f), the eigenvalue 2 may be obtained directly from the modulated
signal component at any fixed spectrometer-setting v, where at least one occurring
particle absorbs.

ii) Reaction raie constanis of the kinetic system.

a) Spectra of occurring particles are non-overlapping:

Tf at distinct spectrometer settings »,, #,, ... only distinct particles contribute to
the modulated signal component and the latter is measured as a function of the
modulation frequency w at these settings #;, »,, ..., then sufficient data is obtained
for calculation of the reaction rate constants. This is achieved using the explicite
solutions (5-9), (4-1") and (4-1") and performing a nonlinear regression. Considering

0
10 10 10 10 10 10" Hz

0-! T L T T T T 1 Y T T
—-

w

-180°

-360 |
1
Phase

Fig. 3. Phase of the modulated component of the particle concentvation [Bgl(t) as a function of the
modulation frequency w (chain B with avbitvary length).

Calculated (according to Eq. {4-1')) for a system with the parameters:
@5 = arctg(—@f(— A+ 1))

Ay =-10"3s1, b =10%s7, by = 108 s71

Ay =—108s1, b, = 104 s~
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only the chains B and C, the monotonic increase in phase (along the chain) of the
modulated component of particle concentrations gives information about the struc-
ture of the kinetic graph. If the phase of the modulated component of the particle
concentration [B;](f) (according to Eq. 4-1') is plotted against w, the number of
vertical inflexion points directly yields information about the rate constants and
the position of the particle By in the sequence (see Fig. 3).

b) Spectra of occurring particles are overlapping: In this case the analysis of the
modulated signal component as a function of the excitation {requency w is more
complicated. Here again nonlinear regression is needed using Egs. (5-9), (4-1') and
{4-1"), but many more spectrometer settings »,, v,, ... and a detailed line shape ana-
lysis of the overlapping spectra are required. Derivation of kinetic data in this case
requires extended numerical analysis by specific computer programmes and these
are being developed in our laboratory.

¢} By variation of the photon flux @,, additional information about the kinetic
behaviour of each species may be derived. This follows from the fact that j.-l is pro-
portional to @, for low values of @,.
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Appendix

A. Solution of the kinetic equations of the veaction sequences B and C. The solutions of Eqs. (2-9”)
and (2-9") may be obtained either from a step by step integration (direct substitution) or by a
matrix technique (cf. sect. 4), The solutions for chain B or C are completely analogous.

1. Divect substitution. Inserting the cycle A solution in the abbreviated form (3-19) of either
(3-18) or (5-9) in (2-9") one obtains by straightforward algebraic manipulation the solution given
below for a chain C with three steps.

[CLl(t) = ke Agy ok —c—cit) (21‘*' et
+ ke Agy Alcy) {ez‘t 08 (Wt + @y + %y) — e %F cospy+ Xl)}

[Co1(8) = ¢y ke Agg {e}:‘t ((zl+ &) (L‘*’ Cy)) el ((5*1+ cy} (—eptey)?
+emol ((+ey) (—cqt o))}

oy ke Ay Aley) {ezt Afcg) cos (wi+ @yt + xa) — €% (— oy + ™ cos (@y+ 1)
+em Gt { ~ Afcy) cos{py+ 1+ xg) + (= cyFcy)~ cos(py+ Zl)}}

[Co0) = ¢y ¢ ko Agy {(€ht—1) (g Ty +0) (Bytcp)? (A-1)
+(em & 1) (¢ (51 o) (—etey)t
— (et = 1) (¢ (gt o) (—categ))}

¢y ¢y ko Agy Alcy) {A(Cz) Alcy) {GEJ cos (wi+ @3+ )1+ Lot 1)
— c0s (@t + 2+ 2a)}
t(em o~ 1) (¢, (—¢y+¢,y)) 7 coslgy+gy)
+(em %~ 1) {A(cy) ¢ cos g+ 1+ %2)
~(cy (—cy+cy))™ cos(py+ Zl)}}
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where
Aler) = (B o) +a?) 12, g = arctg(— /(A + i) %) (A-2)
1=1,2,3, ¢c3==0
2. Matrix method. By using standard matrix algebra technique for functions of triangular

matrices Eq. (4-2) is obtained. If combined with the cycle A solution (3-19) Eq. (2-9”) may be
solved in a straightforward manner, yielding the following expression (notation as in Eqs. A-2).

~

[CLl() = ko Ay (bt —c—ot) (A, +¢,) 1

+ ke Agy Aley) {ehit cos (wt+ gyt 1) — et cos g+ 71) }

[Col() = ¢ ko Agy {eht ((Uy+cy) (Ay+cg)) L= e—Cit (A, +¢;) (—c,+cy))~
et (7 +cy) (— ¢yt cy)) 7}

+oy ko Agy (—cpt )t {eht (Alc;) cos(wi+ gy + 1) — Aley) cos (wt+py+ xa)}
—e~uf Acy) cos(py+xy) +eCFA(c,) cos(pst Xz)}

[Ca)(t) = €4 €3 ke Agy {ehé (g (ly+cy) (A cg)) o=t (o (Rytcy) (—cyt )L (A-3)

—e=¢d (c, (;-1"‘ ) (—t )= Uy 0y ‘32)*1}

¢y ¢y ko Ay {oht {—A(e) (& (= ¢yt ¢)) cos (l+ g3+ 1)
+ A(Cy) (€ (— 1+ Cy)) " cos (i + @3+ ¥a)
+ Alcg) (cg c5) 7 cos (wi+ps+ x3)}
+e=¢ Afey) (¢g (—c1t¢y)) ™ cos(py+ 1)
— e~ A(cy) (¢ (— ¢y cy)) ™ 08 (p5+ xa)
— AlCg) (e Cp) 7! cOs (g + X:s)}} %

J

3. Intervelation of the two forms of integrals in the sequences B and C. Comparison of the two sets
of equations (A-2) and (A-3) reveals that the solutions of the kinetic equations of the sequences
B and C appear in quite a different form, though they must represent identical functions.

The form obtained by direct substitution, (A-2), has the definite advantage that the modu-
lated componcent of each particle concentration in the sequence is expressed as a product of an
amplitude and a phase function (sec Eq. 4-1). Thereby it is directly related to the signals observed
by phase sensitive detection.

In solution (A-3), the modulated component is divided into a set of harmonic oscillations
with different amplitude and phase functions, thereby showing the origin of the contributions
to the modulated component.

Thus each of the two forms of solution has its merits. They may be transformed into each
other by continuous application of elementary trigonometric relations of the type

a cos (wf) + b sin (wt) = Va2} b2 cos (0t + @) (A-4)

However the transformation is quite laborious and so will not be reproduced here.

B. Numevical Calculation of Higher Iteration Terms of Eq. (3-17). For the calculation of terms
of first order in 1/, @ w only the transformation matrices 7(® and T~ have been used (Eq. (3-17)).
Since T and T+ are given by Eqs. (3-11) to (3-13") up to first order in 1/, @ w, the calculation of
the modulated terms up to 2nd order containing the matrices Y and Z is straightforward, though
rather tedious. Further contributions to the modulated 2nd order term result from the seccond
iterated integral in the matrizant solution (Eq. 3-7). The integrals which contribute to the modu-
lated components of 2nd order in 1/, @yw become
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T

t

0

t

eZ’/cos wt’ e—At Y(Z, eZV] dar

+ eZ‘/cos wt’ [Z, e—A1] Yedt dr

30

0
(B-1)
¢
+ [Z, ch]/cos wt’ e~ Yed? d¢’
0
¢ 4
+ er/cos wt’ e—A¢ Ye25'/cos wl” e— A1 Yedt"qs” dt'} TO-1.(A(0))
0 0
Table. Numerical values of the itevative solution Eq. (3-18) and its higher ovder terms?d)

w=6.283x 101 Hz Amplitudcs and phases of components with frequency?)

Particle 0w (zero+-1st) lw (1st) lw (2nd) 2w (2nd)

A 7.786 x 1071 1.637 x 10-3 4.018 x 106 1.268 x 106
—-212.7 —34.6 —84.3

A, 1.951 x10-9 1.951x10—* 8.519x 10712 2.047 x 1012
—1.8x10-% -195.1 —212.7

A, 1.932x 108 1.637x 1073 4.014x10°¢ 1.268 x 10—
—-31.8 -212.7 —263.9

0 =06.283x10% Hz

A 7.786x 1071 3.105x 108 7.610x 108 3.088x 10710
~—269.1 -89.1 —178.6

A, 1.951 x 10— 1.951x 109 4,784 x 10712 3.881 x 1014
~1.8x10-3 —180.9 —-269.1

A, 1.932x 103 3.105x 103 7.610x 108 3.088x 10-10
—89.1 —269.1 +13.7

w=6.283x10° Hz

A, 7.786 x 101 3.105%x 1077 7.611 x 1010 3.089x 10714
~269.8 —89.8 -179.4

A, 1.951 x 10-° 1.951x 109 4,782 x 10712 3.882x10-18
-1.8x101 - 180.2 +89.8

A, 1.932x 10°8 3.105x 1077 7.611 x 10710 3.089 x 10714
—90.2 +89.8 —-1.7x1071

3)  Calculated for a system with the parametcrs
wy = 1571, by = kyy = 10857, Ay = 10257%, kg = 10%s7%, k¢ = 1572, 1 = 100 s, A (0) =

1 Mol/1

resulting cigenvalues:
Ty =—2478x103 571, 7, = —2.000x 108 571, 7y = ~1.012x 102 -1

?) 1w (1st) means: component with frequency w and first order in 1f, @yw etc. The amplitude
and phase pairs read:

1.637 x 1073/ 212.7 £ 1.637 x 1073 cos (w?— 212.7°) Mol/l
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In the table, three typical numerical examples are given for the sake of comparison. The data
clearly show that the terms of 2nd order in !/, @;w with frequency w and 2w are several orders
of magnitude below the fundamental components (Ist order in !/, @ w with frequency w).
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31, Methode zur Koustitutionsaufklirung von
Celluloseforr~alen von niedrigem Substitutionsgrad

29. Mitteilung iiber textilchemische Untersuchungen?)

von K. A. Heinisch, A. Katayama, H. K. Rouette und H, Zollinger

Technisch-Chemisches Laboratorium,
Eidg. Technische Hoclischule Ziirich

(10. V. 72)

Summary. A method is described which allows the determination of the hydroxyl group(s) in
glucose units of cellulose which react with formaldehyde at low degrees of substitution (0.2to0 1.5%
CH,O on cellulose). It consists of permethylation of the cellulose by a sequence of two methylations
with dimethylsulfatc and NaOH (without solvent) followed by 2 exchange methylations with
methyl iodide and sodium n-butoxide and further steps described earlier [2]. The results demon-
stratc that the use of the new permethylation method leads to a loss of material of less than 5%,

1. Einleitung. — Die Umsetzung von Cellulose mit Formaldehyd unter Bildung
von Celluloseformalen hat fiir die Entwicklung pflegeleichter Baumwolltextilien eine
grosse technische Bedeutung [3].

1) 28.Mitteilung vgl. 4. Mohn, H. K. Rouetie & H. Zollinger [1].





