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30. Kinetics of Photochemical Systems with Modulated 
Optical Excitation 

by M. Forster, U. P. Fringeli, and Hs. H. Gunthard 
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Universitatsstrasse 22, CH-8006 Zurich, Switzerland 

(10. VII. 1972) 

Summary. The kinetic equations of a photochemical system are discussed in which the tran- 
sitions from the ground t o  the first excited state are produced by a sinusoidally modulated photon 
source. The system includes irreversible reactions starting from thc first excitcd singlet state S, 
and the first triplet state TI (c j .  Fig. I). Explicit solutions are given for a linear approximation of 
the equations of motion for the parametrically modulated system. The solutions apply only when 
there is weak optical pumping, low quantum yields of the photochemical end-products and for 
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certain conditions, of thc modulation frequency. Thc concentrations of all particles occurring arc 
shown to consist of modulated and unmodulated componcnts where the amplitudes of the modu- 
latcd components arc slowly decaying exponcntials. Thc phases of the modulated cornponcnts 
are shown to be non-decreasing along a scquence of irreversible steps. Formulae are given which 
permit determination of thc photochemical system rate constants and loation of a particle in a 
sequence of irrevcrsiblc reactions. 

1. Introduction. - In  recent years modulation methods have become an important 
tool for the improvement of sensitivity and resolution in many fields of physical 
chemistry. Modulation excitation spectroscopy was proposed first by Hexter [l] for 
the measurement of life times of excited electronic states and has actually been used 
similarly by Lahhart 121 and others. Birks et al. [3] have discussed extensively phase 
fluorimetry methods. Modulated excitation has also been applied very efficiently 
to tlie study of triplet life times, including energy transfer by excited metal atoms [4]. 
Johnston et al. [5] have reported the developmcnt of a modulated excitation infrared 
(MEIR.) gas spectrometer, and Frirtgelz et al. 161 have very recently described an 
MEIR. spectrometer including its sensitivity. An application of this spectrometer 
to the study of a photochemically induced sequence of irreversible reactions has been 
reported by Fringeli [7]. 

During this work, i t  became obvious that the same principle may be applied to  
a variety of spectroscopic techniques, which allow the modulation of the concentra- 
tion of transient particles, e.g. ESR. and microwave spectroscopy. In many cases 
tlie molecular systems, investigated by modulated excitation, behave approximately 
according to Fig. 1, with the additional specification that the exciting light source 
produces only small populations of tlie excited singlet S ,  as compared to  that of the 
ground state singlet So. According to the kinetic scheme Fig. 1, irreversible reactions 
either from the S, or TI state are included and are assumed to  form chains of irre- 
versible first order steps. Owing to the irreversible sequences, continuous pumping 
in the cycle So ; e S ,  + TI leads to irreversible changes of the populations of these 

states, superimposed on the modulation. From a general point of view the exciting 
light source acts as a parametric modulator. 

In this paper we give a complete approximate solution of the kinetic equations 
of this system for the case of a weak pump modulated sinusoidally. The solution is 
based on a treatment usually applied in the theory of quantum mechanical perturba- 
tion. It includes both the aperiodic (exponential) and periodic c,omponents (ampli- 
tudes and phases) of the populations, but is restricted to  the fundamental of the 
modulation frequency and to  times comparable with or greater than the modulation 
period. It will be shown that the exponential behaviour for ‘large’ times is dominated 
by the smallest eigenvalue of the constant part of the kinetic matrix, i.e. by the 
pump coefficient.. The phase shifts of the periodic components of the populations 
in the side chains increase monotonically along the chain, but also depend on the 
phases of the populations in the cycle So S ,  --f TI. The formulae may be extended 

to include first harmonic modulation components, which, however, may be shown to 
be negligible for classical light sources. Tlie solution presented in this paper is con- 
sidered to be applicable to a wide variety of photocliemical systems. In a forth- 

r--- 

t - 1  
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coming paper it will be used in the kinetic analysis of MEIR. spectra of photo- 
generated radicals of polyhydroxy-benzenes [S]. 

2. Definition of the kinetic system and equations of motion. - The kinetic 
equations discussed in this paper are based on the kinetic diagram shown in Fig. 1, 
where So, S, and T, denote the ground state, the first excited singlet and the first 
triplet state, respectively. B,, B,, ... B, denote particles forming a sequence of 
irreversible reactions starting from the excited singlet S,, and C,, C,, . . . C, form 
a similar irreversible first order sequence starting from the first triplet T,. 

S1 

0(t) w 

SO 
Ik3‘ h - c2 

\. 

Fig. 1. First  order kinetics of a photochemical system with vnodulated excitation @(t) = @ow (1 + 
coswt) and sequences of irreversible reactions ( B  and C ) .  T h e  constants k,, and k,, contain radiative 
and nonradiative contributions. T h e  cycle So S ,  --f T ,  represents the A cycle (see section 2). 

For the cycle 
So S, + T, 
+ I 

the important assumption will be made that only the transition So --f S, will be 
excited, with transition rate @(t)w, by the photon-flux @(t). 

The spontaneous transition probability k,,, from S, to So, may contain thermal 
(non radiative) and optical (radiative) contributions. Similarly, the spontaneous 
transition probability k,,, from T, to So, may consist of radiative and non radiative 
contributions. Finally the photon-flux is assumed to be modulated harmonically, viz. 

1 
2 @(t) = @, (1 + cosot) (2-1) 

For the mathematical treatment we shall now denote the cycle S -+S --+ TI as 

the cycle A with the notation A, = So, A, = S,, A, = T, (see Fig. 1). W i t h  this 
notation the equations of motion of the system for t > O  are obtained from Fig. 1 
directly in matrix form 

t o t ,  I 
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d 1 
dt 2 - - ~  1 B(t) ~ = (K  -t - @,, (1 + c o s o t ) ~  W) B(t) (2-2') 

where A(t), B(t)  and C ( t )  represent the column vectors of the instantaneous particle 
concentrations (A($) = A(t) transposed, etc.), i.e. 

.-, 

K A C =  

(2-2") 

0 0 kc 
0 0 0 

. . .  

. . .  

K is the kinetic matrix of the whole system and may be divided into submatrices 
according to the subdivision of the concentration vector (A@), G(t ) ,  C( t ) ) ,  i.e. 

. . .  

. . .  

(2-3') 

(2-3") 

. .  

. .  

(2-4') 

where 

(2-5) 

KBB and K C C  are lower triangular singular matrices of the form (cf. Fig. 1) 
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W A A  = 

0 

1 -1 0 (2-8) 

f 
-c1 0 0 

+c, -c,  0 

0 +c,  
I 

I :  
l o .  i . 

* . 0 )  

: i  
. o  i-cn-1 O J  
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(2-6) 

The matrix ‘1, Q0 (1 + cos a t )  WW is time-dependent for a modulated system. Mi may 
be subdivided into submatrices similarly to (2-3’) 

d 
- (B(t))  = KAB(A(t)) + KBB(B(t)) dt 

(ii(0)) = (0, 0, . . . 0) 
(2-9“) 
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a 
~ (Cit ) )  = KAC(A(t)) + KCc(C(t)) 

dt 
(C(0)) = (0, 0,  ... 0) 

(2-9"') 

The solutions of the non-homogeneous Eqs. (2-9") and (2-9"') may be obtained 
froin the general equations: 

(R(t))  = eKn''(t-t') I<AB(A(t')) dt' ( C ( t ) )  = 1 erccc(r-t') I<Ac(A(t')) dt' (2-10) 

if the solution (A( t ) )  of Eq. (2-9'), i.e. of the cycle A of the kinetic graph, is known. 
Therefore, we must first give an appropriate solution for the time behaviour of the 
Concentrations of the cycle A. 

t t 

0 b 

3. Solution of the kinetic equation of the cycle A. - Eq. (2-2') represents a 
linear system with periodic coefficients. Since these coefficients are continuous for 
t > 0, a unique solution exists, which may be written in the form 

(A(t)) = X( t )  (A(0)) (3-1) 

where %(t) is the unique matrix satisfying the matrix differential equation [9] 

- dX 1 
at 2 

- - = ( KAA + - @o (1 + costot) wWAA %(t) with X(0) = I (3-2) 

Though the theory of systems of this typc has bceii treated intensively, solutions 
in closed form are difficult to obtain [lo]. 

For the case of a weak pump, an approximate solution, adapted to the situation 
prevailing usually in modulated excitation spectroscopy (MES) [5] [6], may be 
obtained as follows. At present, for this technique, the following relations hold 

13, N" lo8 s-', k ,  = 10". . . lo6 s-', 1 b-', Iz, 9 (0, @,,w < k ,  < k,. (3-3) 

Under these conditions fort $ T = 2 n/co the concentrations of the particles, averaged 
over a modulation period, may be shown to be slowly varying functions of time. An 
approximate solution of the equations of motion may then be found by the ansatz 

where 

is the solution of the equation 
d 
dt U(t) = i iU(t) ,  U(0) = I (3-5) 

and X(t) is a new, as yet unknown, matrix. The ansatz (3-4) means that the solution 
matrixX(t) is a product of a matrix ezt containing only unmodulated terms and a 
matrix X(t), which describes the effects of the parametric modulation of the system 
in addition to unmodulated components of the concentrations. 
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By combining Eq. (3-2) with (3-4) we obtain 

d 1 
dt 2 

-. x(t) = - cos wt e-Et WAA ext ~ ( t )  (3-6) 

A solution of Eq. (3-6) may be obtained either by the use of the Baker-Haussdorff 
formula [ll], or by the rnatrizant method [12]. 

The former apparently does not yield formulae easily applicable to actual experi- 
ments, and so a solution based on the matrizant in the pump factor 1/2@,w will be 
given. 

Considering for the moment only the first iteration term of the matrizant solution 
of Eq. (3-6) one obtains: 

X(t) = I + - @,w cosw t'e-gt' WAAezt' dt' + 0 ((;. @,w)2) 

As will be discussed later, numerically calculated solutions up to second order proved 
this approximation to be justified for conditions of MES. using classical light sources. 
For high energy pulsed laser sources extension to higher approximations may be 
required. It should be pointed out that the matrix dKAA 4- % @ Q ~ ~ ~ ~ ) ~  itself contains 
terms of the order @ow)2 and higher, and therefore the integral term inEq.(3-7) 
also contains 0((1/2 @ow)2) terms. In order to obtain a solution useful practically, it 
proved important to retain terms at least up to (1/2 Q0w) in the matrix exponential 

This requirement on the other hand allows the calculation of the eigenvalues and 

Assuming that the matrix K may be diagonalized by similarity transformation 

(3-7) 2 l ( /  

e(KAA -1 @,wWAA)t. 

eigenvectors of by perturbation technique. 

[ 131 I) ,  i.e. - - -  
(3-8) r-1 7 = x, eFf = T e A t  T-1 

one obtains from Eq. (3-7) 
t 

Expanding both T and 2 

and using for the inverse T-l the expansion 

l) It should be pointcd out that thc matrix R is not normal, nevertheless its eigcnvalues are, 
in general, all distinct and therefore can be diagonalized by similarity. 



396 HELVETICA CHIMICA ACTA - VOI. 56, Fasc. 1 (1973) - Nr. 30 

,p) = 

where 0((1/2 @ow)2) contains all terms of the order (1/2 @ow)2, one obtains with the 
approximations 

- 1 T N T(O) + T(1) 
2 

(3-14') 
O I  

(k3 - k2) 0 

(3-11) 

p 9 - 1  = 

by insertion into Eq. (3-8) the commutator equation 

[AW, Z] = /I(]) - y (3-12) 
where 

z p - 1  T(') y = T(O)-1 W A A  T(0) (3-12') 

0 ( k ,  - kz)-l 0 (3-14") 

Eq. (3-12) may be solved for Z by a technique usually applied in the Kayleigh- 
Schrodinger perturbation theory of quantum mechanical systems [14], giving 

/Icw = 

Zmm = 0 (3-13') 

0 - k ,  0 (3-14") 
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a = (- 'Zk3 + k23k31 + h k 3 )  ( k 2 k 3 ) - 1  

b = ~ ( ( k Z l  f '2) ( k 3  - k 2 )  f ' 3 1 k 2 3 ) / h  

y = ( k ,  - kJ-' 

gives for Y and Z respectively 

397 

(3-15') 

k31a'k3 k 3 1 y 2  1 (3-1 5"') 

The eigenvalues, up to first order, are 

Eq. (3-16) shows that n, is proportional to the pump coefficient 
practical applications the following relationship of order of magnitude is fulfilled : 

and in most 

l%l 2 1331 % I % \  (3-16') 

The behaviour over a long period (t 9 T = 2 n / w )  will therefore be dominated 
by jl. Since = 0, the reason for the inclusion in Eq. (3-7') of terms up to  first 
order in 2 now becomes apparent. Omission of the first order terms would have given 
an unacceptable approximation of the slowly varying components of the populations 
within both the cycle A of the kinetic graph and the side chains B and C. 

By inserting the approximation (3-11) in Eq. (3-7') and ordering the terms in 
powers of the pumping factor Q0w, the solution of the kinetic equation (2-9') of the 
cycle A becomes, after some lengthy manipulation, 

( ~ ( t ) )  = T(O) e't + - @ow [z, ezt] + 1 

(3-17) 
( 2  

+ - e't cos wt' e-zt' Y ext' dt' ) T(O)-I (A(0)) 
2 q 

The solution A(t) now becomes separated into unmodulated and modulated terms 
with frequency w 
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1 
lAl](t) = [A1](0) (e?J (1 - @"w (k,,k,, ( k i  - k:) -t k , , k ~  ( k 3 -  k,)) (k;iKi (12,- k2))- l]  

- 1  - -  
.,- e"f q w  (kZ1 (kg - k,) + / Z Z 3 k 3 , )  ( k ,  ( k ,  ~ k 2 ) ) - 1  {a; (A, A,) -1. A,,} 2 

- -  1 + [A,] (0) -2 @,,w eiif k,, (h, - Is2)-' a2 cos (cot I arc tg (- m / ( A ,  - A,))) 

- a3 cos(tot -i arctg(-- m / ( A l  - A,))) 

a, = ((A, - A,)2 w2)-1/2 
- -  - -  

a, = (0-1 a, = ((A, -- A 3 ) 2  -I- rv"--'/2 

Eq. (3-18) may be written more generally for t > max ( l j z  I-', I-') 
- 

[Ai]@) m eAJ (Ai, + hi, cos(cot + p;i)), i = 1, 2, 3 

(3-1 

(3-19) 

where .4(, and Ail denote the amplitudes ol tlie unmodulated and modulated parts, 
respectively, of the concentration iAt](t). q t  is the phase shift of the modulated part 
relative to the exciting light function @,,w (1 + coso) t ) .  By reason of causality the 
phaseshifts pi must be < 0" in every case. 

4. Explicit asymptotic solution for chains B and C. - Insertion of tlie solu- 
tion (3-19) for the cycle A in equation (2-10) for the chains B and C yields two com- 
pletely analogous solutions for the instantaneous concentrations of these chains. 
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Calculation may be either by matrix calculus, according to  Eq. (2-lo), or by direct 
substitution in Eqs. (2-9”) and (Z-g”’), respectively. Both methods are straightforward, 
though rather lengthy, and yield solutions in two different forms, shown to be iden- 
tical by rather tedious rearrangement of terms and application of trigonometric 
formulae. It should be remembered that all solutions given below are valid only for 
t $ T = 2 n / w ,  i.e. for the asymptotic behaviour of the modulated system. 

4.7. Solution by direct substitutioiz. For the explicit solutions of a chain C with 3 
steps, see appendix A. 

From these solutions, a simple general expression may be found for the modulated 
part of the concentration [ C j ] ( t )  of the particle C j  in a chain of arbitrary length n 
(n > i) 

6 - 1  

and the endpoint of c h i n  C is given by: 

1 

(4-1”) I 
I w ?I -1 

x cos wt + p3 + 2 arctg (- G) + arctg (- J ( i = l  

Since in general /ubl/ 9 1, the modulated part of the concentration of particle C, 
has a phase shift differing by N - 90” from its precursor Cn-l. 

4.2. Solution by matrix method. Eqs. (2-6) show that the kinetic matrices of both 
the B and C sequence are lower triangular matrices. The kinetic eigenvalues are 
given directly by the diagonal elements. Furthermore, KBB and K C C  may be ana- 
lytically diagonalized and therefore the exponentials exp (KBBt), exp (Kcct) may be 
expressed in closed form according to Eq. (3-8). 

For instance the exponential matrix exp(KCC(t - t‘)) in Eq. (2-10) reads, for a 
chain with three steps 

0 O ?  

I --zze-Ci(t-t’) + C,e-ci(t-t’) 

- c1 + c2 - + 1 - e-cz(t -t’) + 1 
.) L ______- 

z, The arctg function in these expressions has to  bc taken as follows in the neighbourhood of the 
point infinity 

z 
2 

arctg(+ a) =- 
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Hence, Eq. (2-10) may be exploited directly. For the explicit solutions of chain C 
with 3 steps, see appendix A. 

5. Discussion. - The asymptotic solution of the kinetic equations will be dis- 

i. accuracy of the asymptotic solutions 
ii. information obtainable from modulation spectroscopy experiments. 
5. I. Accuracy of the solution. - 5. I .  I .  Limitations. The use of the matvizant solution 

for the asymptotic behaviour may seem objectionable since it is usually only appro- 
priate for short time behaviour. However, by the arcsatz (3-4) the behaviour over a 
period is taken into account before the iteration step. We therefore consider its use 
as an asymptotic solution to be justified in essentially the same way as is usual in 
quantum mechanical treatments of time dependent perturbations of first order 
radiation processes [15]. 

Another important fact related to the eigenvalues of I( should be mentioned. 
In the discussion it has been assumed so far that Eq. (3-16') holds. Although the 
second inequality therein will be fulfilled for experiments with classical light sources, 
an accidental dcgeneracy could occur, viz. 

cussed mainly from two points of view : 

1; = A: or Iz = n, (5-1) 

In this case the solution changes into a form with terms t.exp(&t) etc. [16]. Though 
such degeneracies might not appear frequently, they should be kept in mind. 

The most important simplification is the neglect of higher iteration steps, e.g. 
terms with (1/2 @ow)2, (1/2 cow)3 . . . which contain frequencies 0, LO, 2 s  . . . . To 
investigate the convergence of the approximate solution of cycle A, terms with 00 
(with order 0 and 1st order in liZ @ow), 1 0  (1st and 2nd order in 1/2 O0w) and 20 
(2nd order in l/s@ow) have been calculated numerically and compared with each 
other (see appendix B) . 

From these calculations one could derive some c0ndition.s which have all to be 
fulfilled if the asymptotic solution is to be correct to within a few percent: 

and for practical applications 
@,w < 10 s--l (5-5) 
- 

t > max (10 I l2 1-1, 10 \~,I--I, 20 nw-1) (5-6) 

w >-on l i ,1 (5-7) 
- 

From Eq. (3-16) it is obvious that for k g  = kc  = 0, A, = 0. Furthermore, in this 
case f , ( i )  = 0, i == 1 , . . 00 for all orders of approximation. Thereby Eqs. (5-4) and 
(5-7) become meaningless. It should be pointed out that Eq. (3-18) still holds for the 
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case where no irreversible photochemistry takes place, which can be shown by 
inserting k g  = kc = 0 in Eqs. (2-4) and recalculating as in sect. 3. Furthermore, in 
this case it can be shown that by decreasing co to zero, Eq. (3-18) is converted to 
the solution of the unmodulated system 

d 
dt (A($)) = ( K A A  + OOWWAA) (A(t)) (5-8) 

(cf. Eq. (2-g')), that is, for k B  = kc = 0, no lower limit exists for co. 

be simplified 

[A,]@) 2: [A,](O) eAit 1 + -QOw{al (k,  (k2, - k,) + k23k31) (kZk3)-' sincot 

Provided all the inequalities (5-2) to (5-7) are valid, the solution (3-18) may now 

- -  
- {  : 

- a2(k2, (k3-k2)  +k23k3,) (k2(k3-k~))-' .cos(~~~+arctg(- co/(Al-A,))) 

+a, k&l (A,  (k3-k2))-1 cos(cut + arctg(- GO/& - i,)))> 

[A2] (t) 'v [A,] (0) 

[A31(t) 2 [A,1(0) 

k;' + a2 cos (at + arctg (- co/(Al - A,))) 

1 
@,w exit k,, (K2k3)-1 + (k3 - l4-l 

with abbreviations al, a2, a3 the same as in Eq. (3-18). The three expressions for 
[A,](t), [AJ(t)  and [A3](t) in Eq. (5-9) contain those parts of the solution (3-18) 
which may now be observed experimentally by use of the modulation systems at  
present available. 

5.1.2. Conservation ofparticle mmber. If in Fig. 1 k B  = kc  = 0 the particle number 
is conserved within cycle A, then according to Eq. (3-4) x becomes singular, hence 
Il = 0 (cf. Eq. (3-16)). Thus for t $ T = 2 n/co all components of the populations 
A,, A,, A, (modulated and unmodulated) are constant in time. 

The eigenvalue 0 of the matrices KBB and K C C  expresses the fact that for t -+ 00 

the total particle number Al(0) must be either in the state Bm or C,. This may be 
verified for chains B and C with three steps from Eq. (A-3) (see appendix) which 
yields : 

[B,l(w) = k3 ~B[A~](O) (Az3 kc + k3 k ~ ) - l  f O(X2-l) 

[C31(=) = K23 kc[AJ(O) (& kc + k 3  h-lf O(j2- l )  (5-10) 

As to be expected, the populations of the endpoints of the chains B and C for t -+ 00 

depend on the kinetic constants of only the A cycle. 
26 
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5.2. Experimental information derivable from the asymptotic solutions. - 5.2.1. Rela- 
tion to MES.-Ex+eriments. The use of the solutions (3-18), (5-9), (4-1') and (4-1") may 
be classified according to two typical systems (Fig. 2) I61 

i. single modulation experiments 
ii. double modulation experiments. 

Sing1.e Modulation 

10 

Double Modulation 

Fig. 2 .  Schemes for Modulation Spectroscopy 
S :  source for analysing radiation, M:  modulator with frequency B for the analysing radiation, 
UV. : UV.-light modulated with frequencyw, C: cell with rcaction under examination, D:  Detcctor, 
A:  Amplifier, dc- or ac-coupled, PS: phase splitter, PSD: phase sensitive dctector with reference 
frequency o or D, I: Integrator, MC: signal originating from the modulated components of 
particle concentrations, UMC: signal excluding modulated components of particle concentrations. 

In these types, the signal S( t ,  v) observed is either proportional to the modulated 
concentrations, i.e. 

S(t, Y) 0~ x & m ( v )  cm(t) = Z.(v) c(t13) (5-11) 
m 

or is proportional to the exponential of the concentrations (modulated and unmodu- 
lated) 

where 
E ~ ( Y )  = molar extinction coefficient of particle m at spectrometer setting v 
cm(t) = instantaneous particle concentration of particle m 
L = thickness of absorption cell 

Eq. (5-11) relates to situations often encountered in ESR., NMR. and MW. 
spectroscopy (weak absorption), whereas the second case (5-12) is realised in the 
Lambert-Beer type, e.g. optical experiments such as RLEUV.- and ME1R.-spectro- 
scopy. For the latter type the expression (5-12) may bc simplified, by taking into 
account the fact that the modulated components of the instantaneous concentrations 

S(t, v) oc exp{- LzEm(v) cm(t)} = expi-L E ( Y )  ~(t)}') (5-12) 
rn 

3) For the sake of simplicity we denote the vector (,%(t), @t), C(t))  by F ( t ) ,  cf. Eq. (2-2") 
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of all reacting particles fulfil the inequality 

Hence, in this case 
L Z(V)  c”(t) < 0.2 (5-13) 

S( t ,  Y )  cx expi-L E(v) c’(t)} (1 - L ;(Y) c”(t)) + 0 ((L E(Y) c”(t))2) (5-14) 

where L>(v) c”(t) contains all the modulated and L E ( v )  c’(t) all the unmodulated 
components of the particle concentrations. 

Information about the modulated and unmodulated components of particle con- 
centrations may be obtained directly by using appropriate phase-sensitive detector 
systems, e.g. single and double modulation for (5-11) and double modulation for 

5.2.2. Information derivable f r o m  arnfditude and Phase measurements. We restrict 
ourselves to weak pump experiments and situations where all the inequalities (5-2) 

i) Smallest eigenvalzce il. Since the vector of the modulated concentrations is pro- 
portional to exp &), the eigenvalue i, may be obtained directly from the modulated 
signal component a t  any fixed spectrometer-setting v, where at least one occurring 
particle absorbs. 

(5-12). 

to (5-7) hold. 

ii) Reaction rate constants of the kinetic systern. 
a) Spectra of occurring particles are non-overlapping : 
If at distinct spectrometer settings vl, vz, . . . only distinct particles contribute to 

the modulated signal component and the latter is measured as a function of the 
modulation frequency u) at these settings vI, vz, . . . , then sufficient data is obtained 
for calculation of the reaction rate constants. This is achieved using the explicite 
solutions (5-9), (4-1’) and (4-1“) and performing a nonlinear regression. Considering 

loo lo2 l oL  lo6 loa  10” Hz 
I I I I 1 I c 

W 

t 
Phase 

Fig. 3. Phase of the modulated component of the particle concentration [B,](t) as a function of the 
modulation frequency o (chain B with avbitravy length). 

Calculatcd (according t o  Eq. (4-1’)) for a system with the parameters: 
v3 = arctg (- w / (  - ;i, + A)) 
I ,  = - 10-3 s-1, b, = loz s-1, b, = lo6 s-1 

2, = - 108 s-l, bz = lo4 s-1 

- 
- 
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only the chains B and C, the monotonic increase in phase (along the chain) of tlie 
modulated component of particle concentrations gives information about the struc- 
ture of the kinetic graph. If the phase of the modulated coniponent of the particle 
concentration jBj](t) (according to Eq. 4-1') is plotted against w, tlie number of 
vertical inflexion points directly yields information about the rate constants and 
tlie position of the particle Bj in the sequence (see Fig. 3). 

b) Spectra of occurring particles are overlapping: In this case the analysis of the 
modulated signal component as a function of the excitation frequency co is more 
complicated. Here again nonlinear regression is needed using Lips. (5-9), (4-1') and 
(4-l"), but many more spectrometer settings vl, vz, . . . and a detailed line shape ana- 
lysis of the overlapping spectra are required. Derivation of kinetic data in this case 
requires extended numerical analysis by specific computer programmes and these 
are being developed in our laboratory. 

c) By variation of the photon flux @,,, additional information about the kinetic 
behaviour of each species may be derived. This follows from the fact that A1 is pro- 
portional to @, for low values of @,. 

- 
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Appendix 
A .  Solution of the kinetic equations of the reaction sequences B and C. 'The solutions of Eqs. (2-9") 

and (2-9'") may be obtained either from a step by step integration (direct substitution) or by a 
matrix technique (cf. sect. 4 ) .  The solutions for chain I3 or C are completely analogous. 

1 .  Direct substitution. Tnserting the cycle A solution in the abbrcviated form (3-19) of either 
(3-18) or (5-9) in (:1-9"') one obtains by straightforward algebraic manipulation the solution given 

(&l) 
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- 
A(cr) = ( ( I , + C L ) ~ + O ~ ) - ~ / ~ ,  xi = arctg(-w/(Xl+ci))2) (A-2) 

i = 1 , 2 , 3 ,  c , - 0  

2. Matrix method. By using standard matrix algebra technique for functions of triangular 
matrices Eq. (4-2) is obtained. If combined with the cyclc A solution (3-19) Eq. (2-9”’) may be 
solved in a straightforward manner, yielding the following expression (notation as in Eqs. A-2). 

(A-3) 

of 
B 

3. Interrelation of the twoforms of integrals in the sequences B 6. Comparison of the two sets 
equations (:\-2) and (A-3) reveals that the solutions of thc kinetic equations of the sequences 
and C appear in quite a different form, though they must represent identical functions. 

The form obtained by direct substitution, (A-Z), has the definite advantage that the modu- 
lated componcnt of each particle conccntration in the sequence is expressed as a product of an 
amplitude and a phase function (scc Eq. 4-1). Thereby it is directly related to  the signals observed 
by  phase sensitive detection. 

In solution (A-3),  the modulated component is divided into a set of harmonic oscillations 
with different ainplitudc and phase functions, thereby showing thc origin of the contributions 
to the modulated component. 

Thus each of the two forms of solution has its merits. They may be transformed into each 
othcr by continuous application of elementary trigonometric relations of the type 

a cos (w2) + b sin (02) = f a 2  +bz cos (cot+ 9) (A-4) 

However the transforniation is quite laborious and so will not be reproduced here. 

B. Numerical Calculation of Ifigher Iteration Terms of Eq. (3-77). For the calculation of terms 
of first order in liZ @ow only thc transformation matrices 1‘@) and have been used (Eq. (3-17)). 
Since T and T-l are given by Eqs. (3-11) to (3-13”’) up to first order in 1/2 @,,w, the calculation of 
the modulated terms up to  2nd order containing the matrices Y and 2 is straightforward, though 
rather tedious. Further contributions t o  the modulated 2nd order term result from the second 
itcrated integral in the matrizant solution (Eq. 3-7). The intcgrals which contribute to the modu- 
latcd components of 2nd order in @,,‘ow become 
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t 

+ ezt/cos cot' [Z, e-;it'] YeZf dt' 

0 

t 

+ [Z, czt]/cos ot' e -2t' YJt' dt' 

0 

t t' 

0 0 

Table. Namerical values of the iterative solution Eq. (3-78) and i t s  higher ordev terms") 

b (B-1) 

ru = 6.283 x 10, Hz 

Particle O w  (zeroflst)  lo  (1st) l w  (2nd) 2w (2nd) 

A1 7.786 x 10-1 1.637 x lo-, 4.018 x 3 O-E 1.268 x 10-8 

Amplitudcs and phases of components with frequencyb) 

- 212.7 - 34.6 - 84.3 
1.951 x 1.951 x 10-9 8.519 x 1 0-l2 2.047 x 10-l2 A2 - 1.8 x 10-5 - 195.1 - 212.7 

A3 1.932 x lo-, 1.637 x 4.014 x 1.268 x 
- 31.8 - 212.7 - 263.9 

o = 6.283 x lo3 Hz 

A, 7.786 x 10-1 3.105 x 7.610 x 10- 3.088 x 
- 269.1 - 89.1 - 178.6 

-4.2 1.951 x 10-9 1.951 x 10-9 4.784 x 3.881 x 

A3 1.932 x 3.105 x 10" 7 . 6 1 0 ~  3.088 x 10-lo 
- 1.8 x lo4 - 180.9 - 269.1 

- 89.1 - 269.1 + 13.7 

w = 6.283 x lo5 Hz 

7.786 x 10-1 3.105 x lo-' 7.611 x 10-lo 3 . 0 8 9 ~  

1.951 x 1.951 x 10-9 4.782 x 3.882 x 10-la 
- 269.8 - 89.8 - 179.4 

- 1.8 x 10-1 - 180.2 + 89.8 
A3 1.932 x 10-3 3.105 x lo-' 7.611 x 1 O - I O  3.089 x lo-'* 

- 90.2 + 89.8 - 1.7 x 10-l - 
a) Calculated for a systcm with the parametcrs 

m a o  = 1 s-1, k,, = k,, = 108 s-1, k,, = 102 s-,, k R  = lo3  s-l, k c  = 1 S-', t = 100 S, A,(O) = 
1 Mol/l 
resulting cigcnvalues : 

lo  (1st) means: component with frequency o and first order in 
and phase pairs rcad : 
1.637 x 212.7 1.637 x cos (wt- 212.7") Mol/l 

- - a 1 -  - - 2.478 x 10-3 S-1, ;I, = - 2.ooo x 108 S-1, A, = - 1.012 x I 02 S-1 

D) a0w etc. The amplitude 
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In  the table, thrce typical numerical examples are given for the sake of comparison. The data 
clearly show that the terms of 2nd order in @,,w with frcqucncy w and 2w are several orders 
of magnitude below the fundarncntal componcnts (1st order in 1/2 @ow with frequency w). 
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3 1. Methode zur Konstitutionsaufkl3rung von 
Celluloseforr-alen von niedrigem Substitutionsgrad 

29. Mitteilung uber textikhemische Untersuchungenl) 

von K. A. Heinisch, A. Katayama, H. K.  Rouette und H. Zollinger 
Technisch-Chemisches Lahoratorium, 
Eidg. Technische Hochschule Zurich 

(10. V. 72) 

Summary. A mcthod is described which allows the determination of the hydroxyl group(s) in 
glucose units of ceIlulose which react with formaldehyde at  low degrees of substitution (0.2 to 1.5% 
ClI,O on cellulose). It consists of pcrmethylation of the cellulose by a sequence of two methylations 
with dimethylsulfatc and NaOH (without solvcnt) followed by 2 exchange methylations with 
mcthpl iodidc and sodium n-butoxide and further steps described earlier (23. The results demon- 
stratc that the use of the new permethylation mcthod leads to a loss of material of less than 5%. 

1. Einleitung. - Die Umsetzung von Cellulose mit Formaldehyd unter Bildung 
von Celluloseformalen hat fur die Entwicklung pflegeleichter Baumwolltextilien eine 
posse technische Bedeutung [3]. 

l) 28.Mitteilung vgl. A .  Mohn, H. K. Rozrctte & H .  Zollingev [l]. 




